Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 21: Binomial Coefficients. Section 6.4

1 Binomial Coefficients

The binomial theorem gives the coefficients of the expansion of powers of binomial expressions.

Example 1. The expansion of $(x+y)^{3}$ can be found using combinatorial reasoning instead of multiplying the three terms out. When $(x+y)^{3}=(x+y)(x+y)(x+y)$ is expanded, all products of a term in the first sum, a term in the second sum, and a term in the third sum are added. Terms of the form $x^{3}, x^{2} y, x y^{2}, y^{3}$ arise. To obtain a term of the form x^{3}, an x must be chosen in each of the sums, and this can be done in only one way. Thus, the x^{3} term in the product has a coefficient of $1=\binom{3}{3}$. To obtain a term of the form $x^{2} y$, an x must be chosen in two of the three sums. Hence, the number of such terms is the number of 2 -combinations of three objects, or $\binom{3}{2}$. In the same way we get $\binom{3}{1}$ for the coefficient of $x y^{2}$ and $1=\binom{3}{0}$ for the term y^{3}.

Theorem 2. (THE BINOMIAL THEOREM) Let x and y be variables, and let n be a nonnegative integer. Then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
$$

Some properties of the binomial coefficients are

1. $\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n-1}+\binom{n}{n}=2^{n}$.
2. $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}=0$.

Theorem 3. (PASCAL'S IDENTITY) Let n and k be positive integers with $n \geq k$. Then

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} .
$$

